35.Bari, F., et al., Inhalation of Hydrogen Gas Protects Cerebrovascular Reactivity Against Moderate but Not Severe Perinatal Hypoxic Injury in Newborn Piglets. Stroke, 2010. 41(4): p. E323-E323.

36.Cui, Y., et al., Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats. J Surg Res, 2014.

37.Dohi, K., et al., Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury. PLoS One, 2014. 9(9): p. e108034.

38.Domoki, F., et al., Hydrogen is Neuroprotective and Preserves Cerebrovascular Reactivity in Asphyxiated Newborn Pigs. Pediatric Research, 2010. 68(5): p. 387-392.

39.Eckermann, J.M., et al., Hydrogen is neuroprotective against surgically induced brain injury. Medical Gas Research, 2011. 1(1): p. 7.

40.Feng, Y., et al., Hydrogen-rich saline prevents early neurovascular dysfunction resulting from inhibition of oxidative stress in STZ-diabetic rats. Curr Eye Res, 2013. 38(3): p. 396-404.

41.Fu, Y., et al., Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neuroscience Letters, 2009. 453: p. 81–85.

42.Fujita, K., et al., Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One, 2009. 4(9): p. e7247.

43.Gu, Y., et al., Drinking Hydrogen Water Ameliorated Cognitive Impairment in Senescence-Accelerated Mice.Journal of Clinical Biochemistry and Nutrition, 2010. 46(3): p. 269-276.

44.Han, L., et al., Hydrogen-rich water protects against ischemic brain injury in rats by regulating calcium buffering proteins. Brain Res, 2015.

45.Hong, Y., et al., Beneficial effect of hydrogen-rich saline on cerebral vasospasm after experimental subarachnoid hemorrhage in rats. J Neurosci Res, 2012. 90(8): p. 1670-80.

46.Hong, Y., et al., Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3beta signaling pathway. PLoS One, 2014. 9(4): p. e96212.

47.Hou, Z., et al., Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury. Brain Res Bull, 2012. 88(6): p. 560-5.

48.Huang, G., et al., The neuroprotective effects of intraperitoneal injection of hydrogen in rabbits with cardiac arrest.Resuscitation, 2013. 84(5): p. 690-5.

49.Hugyecz, M., et al., Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Research, 2011. 1404: p. 31-8.

50.Ito, M., et al., Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res, 2012. 2(1): p. 15.

51.Ji, X., et al., Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress.Brain Research, 2010. 1354: p. 196-205.

52.Ji, X., et al., Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress. Journal of Surgical Research, 2012. 178(1): p. e9-16.

53.Kashiwagi, T., et al., Suppression of Oxidative Stress-Induced Apoptosis of Neuronal Cells by Electrolyzed-Reduced Water. Animal Cell Technology Meets Genomics, 2005. 2: p. 257-260.

54.Kashiwagi, T., et al., Electrochemically reduced water protects neural cells from oxidative damage. Oxid Med Cell Longev, 2014. 2014: p. 869121.

55.Kobayashi, H., et al., Effects of Hydrogen Gas in a Mouse Cold Induced Brain Injury Model. Journal of Neurotrauma, 2011. 28(5): p. A64-A64.

56.Kuroki, C., et al., Neuroprotective effects of hydrogen gas on brain in three types of stress models: alpha P-31-NMR study. Neuroscience Research, 2009. 65: p. S124-S124.

57.Kuroki, C., et al., Neuroprotective effects of hydrogen gas on brain in three types of stress models: A P-31-NMR and ESR study. Neuroscience Research, 2011. 71: p. E406-E406.

58.Li, J., et al., Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res, 2010. 1328: p. 152-161.

59.Liu, F.T., et al., Molecular Hydrogen Suppresses Reactive Astrogliosis Related to Oxidative Injury during Spinal Cord Injury in Rats. CNS Neurosci Ther, 2014.

60.Liu, L., et al., Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res, 2014. 1589: p. 78-92.

61.Liu, W., et al., Protective effects of hydrogen on fetal brain injury during maternal hypoxia. Acta Neurochir Suppl, 2011. 111: p. 307-11.

62.Manaenko, A., et al., Hydrogen inhalation is neuroprotective and improves functional outcomes in mice after intracerebral hemorrhage. Acta Neurochir Suppl, 2011. 111: p. 179-83.

63.Manaenko, A., et al., Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice. Critical Care Medicine, 2013. 41(5): p. 1266-75.

64.Mano, Y., et al., Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia-reperfusion. Free Radic Biol Med, 2014. 69: p. 324-30.

65.Matsumoto, A., et al., Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep, 2013. 3: p. 3273.

66.Mei, K., et al., Hydrogen protects rats from dermatitis caused by local radiation. J Dermatolog Treat, 2014. 25(2): p. 182-8.

67.Nagata, K., et al., Consumption of Molecular Hydrogen Prevents the Stress-Induced Impairments in Hippocampus-Dependent Learning Tasks during Chronic Physical Restraint in Mice. Neuropsychopharmacology, 2009. 34(2): p. 501-508.

68.Olah, O., et al., Delayed neurovascular dysfunction is alleviated by hydrogen in asphyxiated newborn pigs.Neonatology, 2013. 104(2): p. 79-86.

69.Ono, H., et al., Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Medical Gas Research, 2011. 1(1): p. 12.

70.Ostojic, S.M., Targeting molecular hydrogen to mitochondria: Barriers and gateways. Pharmacol Res, 2015. 94: p. 51-3. (brain)

71.Pshenichnyuk, S.A. and A.S. Komolov, Dissociative Electron Attachment to Resveratrol as a Likely Pathway for Generation of the H2 Antioxidant Species Inside Mitochondria. The Journal of Physical Chemistry Letters, 2015. 6(7): p. 1104-1110.

72.Sato, Y., et al., Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun, 2008. 375(3): p. 346-350.

73.Shen, L., et al., Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest.Neurochemical Research, 2011. 36(8): p. 1501-11.

74.Shen, M.H., et al., Neuroprotective effect of hydrogen-rich saline in acute carbon monoxide poisoning. CNS Neurosci Ther, 2013. 19(5): p. 361-3.

75.Spulber, S., et al., Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS One, 2012. 7(7): p. e42078.

76.Sun, Q., et al., Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity. Critical Care Medicine, 2011. 39(4): p. 765-9.

77.Takeuchi, S., et al., Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci, 2015. 16(1): p. 22. (brain)

78.Ueda, Y., A. Nakajima, and T. Oikawa, Hydrogen-Related Enhancement of In Vivo Antioxidant Ability in the Brain of Rats Fed Coral Calcium Hydride. Neurochemical Research, 2010. 35(10): p. 1510-1515.

79.Wang, C., et al., Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kappaB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neuroscience Letters, 2011. 491(2): p. 127-32.

80.Wang, T., et al., Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats. Toxicol Appl Pharmacol, 2014.

81.Wang, W., et al., Hydrogen rich saline reduces immune-mediated brain injury in rats with acute carbon monoxide poisoning. Neurological Research, 2012. 34(10): p. 1007-15.

82.Xie, F. and X. Ma, Molecular Hydrogen and its Potential Application in Therapy of Brain Disorders. Brain Disord Ther, 2014: p. 2.

83.Yan, H., et al., The neuroprotective effects of electrolyzed reduced water and its model water containing molecular hydrogen and Pt nanoparticles. BMC Proc, 2011. 5 Suppl 8: p. P69.

84.Yamada, T., et al., Hydrogen supplementation of preservation solution improves viability of osteochondral grafts.ScientificWorldJournal, 2014. 2014: p. 109876.   (bones)

85.Yokoi, I., Neuroprotective effects of hydrogen gas on brain in three types of stress models: a P-31 NMR and ESR study. Neuroscience Research, 2010. 68: p. E320-E320.

86.Zhan, Y., et al., Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Critical Care Medicine, 2012. 40(4): p. 1291-6.

87.Zhang, L., et al., Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3beta in the DRG in rats. Brain Res Bull, 2014. 106C: p. 47-55.

88.Zhou, J., et al., Hydrogen-rich saline reverses oxidative stress, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and puncture. Journal of Surgical Research, 2012. 178(1): p. 390-400.

89.Zhuang, Z., et al., Nuclear factor-kappaB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J Neurosci Res, 2013. 91(12): p. 1599-608.

90.Zhuang, Z., et al., Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci, 2012. 13: p. 47.